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The evolution of a model of the flow in a layer of fluid suddenly heated from below 
at a Rayleigh number sufficient for a laboratory flow to ultimately become tur- 
bulent is investigated with numerical experiments. The numerical study simu- 
lates the flow by means of the mean field equations along the lines of Herring’s 
(1963, 1964) pioneering study but uses a different finite difference technique 
and concentrates attention on the flow development rather than on the final 
statistically steady state. These solutions are compared with previous and some 
new simulations in two dimensions. The solutions confirm Herring’s work and in 
addition show that the mean field equations, and in particular the weak-coupling 
approximations, describe the gross features of the model sufficiently well for the 
mean field equations to be used with reasonable confidence in evolutionary 
studies. 

1. Preliminary remarks 
When a layer of fluid, initially at  rest, is suddenly heated from below we ob- 

serve after an interval of time the progressive development of convective mo- 
tions till the whole layer is convecting. If the Rayleigh number is sufficiently 
high and sources of thermal noise are present the ultimate motion is unsteady, 
the whole field of flow having finite amplitude fluctuations of temperature 
and velocity. A number of laboratory experiments and some numerical sim- 
ulations in two dimensions have been reported describing many of the detailed 
features of the motion but those studies make it difficult to obtain an overall 
description of the flow, in particular, of the evolution of the gross thermodynamic 
structure. 

The information of greatest interest is contained in the mean field equations, 
where spatial means are taken over horizontal planes. A study of these equations 
is especially interesting because of the possibility of comparison with the recent 
two-dimensional simulation of the protosublayer (Elder 1 9 6 8 ~ ) .  Our study is 
made possible by the work of Herring (1963,1964) who in a pioneering numerical 
calculation of the mean field equations of the weak coupling approximation has 
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obtained results which agree broadly with the laboratory data. In  many respects 
the results are surprisingly good in view of the harshness of the approximations, 
but here we accept the approach as it basis for further study. Although Herring’s 
calculations involved the time development of the flow he was essentially in- 
terested in the ultimate statistically steady state. He does, however, give one 
figure (Herring 1963, p. 329, figure 1) showing the evolution of the Nusselt 
number. But these results do not necessarily give the correct temporal develop- 
ment. For example, in the study with rigid confining planes (Herring 1964) he 
places the Prandtl number rr = 00 at the outset, since, as can be seen by inspec- 
tion of the equations, in the final steady state the solution is independent of (T. 

Further he approximates the spatial spectra in the light of the symmetries of the 
final motion. 

We will study the time development of Herring’s model in some detail. In  the 
course of the work we are also able to verify Herring’s calculations, clarify a 
number of minor details, and simplify both the calculations and their interpre- 
tation. Now the essential feature of Herring’s numerical method is the use of a 
truncated Fourier representation of the field variables. But some of his data, in 
particular the small bumps in the mean temperature on the margin of the sub- 
layer (e.g. Herring 1963,~.  332,figure 7) whichsuggest atypeof Gibbs-phenomena, 
indicate a possible weakness of the finite Fourier representation. In  the iterative 
finite difference method used here this possible difficulty does not exist but we 
are able to essentially confirm Herring’s results for the statistically steady state. 
Further, because in the statistically steady state the boundary conditions imply 
that the Fourier modes of odd parity are zero these modes are (legitimately) 
neglected in Herring’s calculations. This will not be the case during the evolution 
of the system, so that the data shown in the above-mentioned figure do not neces- 
sarily indicate the evolution of the physical system. The present calculations do 
not involve simplifications of this kind. 

Our task is therefore to verify the numerical method of solving the mean field 
equations by comparison with Herring’s solution and then to extend the study 
to the evolution of the mean fields, comparing our predictions where possible 
with a two-dimensional simulation. 

The problem is formulated in $2; numerical results which are presented in 
$Q 3-5, are compared with the two-dimensional simulation in Q 6. 

The emphasis in this paper is on the broadest features of the time development. 
In essence we wish to know which features of the time development are re- 
tained in the one-dimensional model and to what extent the model time scale is 
reliable. 

2. Statement of the problem 
Consider an isothermal layer of fluid at rest confined between rigid horizontal 

conducting planes a distance H apart and vertical insulating walls a distance 
typically L apart. If at  time zero the temperature of the lower plane is raised from 
temperature To to temperature (!!‘,+AT) and a little thermal noise of r.m.s. 
amplitude 8’ is present, motion will ultimately ensue. If we choose units of length, 
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H and time H ~ / K ,  where K is the thermal diffusivity of the fluid, the flow is speci- 
fied by: 

A = ygATH3/~v,  Rayleigh number; 

1 = L / H ,  aspect ratio; 

u = V / K ,  Prandtl number; 

6 = 8’/AT, noise figure; 

where y is the coefficient of cubical expansion, g is the acceleration of gravity, and 
v is the kinematic viscosity. With the above units, the field equations in di- 
mensionless form can be written in terms of horizontal mean quantities together 
with a ‘fluctuating’ component (Herring 1963), measuring in a Cartesian frame 
x, y horizontally and z vertically upwards: 

aT 
- = T,  - (we,,, at 

where: (i) (2a )  and (23) represent the decomposed energy equation with the 
total temperature written as T(z ,  t )  + 8(x, y, z, t )  such that the horizontal mean 
0 = ( 1/12) JJ Odxdy = 0; (ii) ( 2 c )  and ( 2 4  are derived from the momentum equa- 
tion, w being the vertical velocity and VZ, = (a2/i3x2+a2/ay2) is the ‘horizontal’ 
Laplacian; (iii) the terms A, 3 represent the fluctuating self-interactions arising 
from the advection of heat and momentum of the fluctuations acting on them- 
selves. 

Before proceeding, it is of interest to see if by a suitable choice of time and 
length scale the equations could be simplified. The result which follows seems to 
have been overlooked in the discussions of Herring’s work. If we change the 
length, time and velocity units to 8, S2, S-l, equations (2) remain unchanged 
except that A becomes AS3 and the right-hand side of (2c)  is multiplied by l/S. 
Hence, provided the source term on the right-hand side of (2c)  is negligible, we 
can rescale the equations and obtain a single solution valid for nearly all A .  We 
can choose S so that 

(3) 

provided 6 < 1 so that the two sublayers are separated. Now it is known (e.g. 
Elder 19663, figure 12) that if u 2 1 convective flows behave as if u = 00, when 
the right-hand side of (2c)  is negligible. If, however, u < 1 we cannot discard this 
term on these grounds. Here we only consider u 2 1. Hence we solve (2)  for one 
value of A and can immediately obtain solutions at  other values of A by means of 
(3) and the above units. This deduction provides a nice check on the results. We 

- 

AS3 = A, = const. 
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see from Herring’s data (e.g. 1963, p. 336, figure 16) that over the range of Ray- 
leigh numbers 4 x lo3 - lo6 the results are consistent with the deduction.? We 
would perhaps have expected, as 6 approaches unity (from below), because the 
two sublayers begin to overlap, that the results would depart from the above 
correlation. But even at  A = 4 x lo3 with S z Q the correlation holds. 

It is, nevertheless, necessary to remind ourselves that the above correlations 
must apply if the model is to apply to actual thermal turbulence. In the laboratory 
the scaling implied by (3) has been confirmed by many workers for thermal 
turbulence when B 2 1 (e.g. Malkus 1954; Townsend 1959). Hence, strictly the 
argument must run: given the laboratory data, what simplifications of the field 
equations lead to the above correlations Z 

Here we retain the equations in the form (2), since it is easier to relate the solu- 
tions to one’s previous experience. We shall choose the particular typical Ray- 
leigh number on grounds of convenience. A value of lo5 is a good choice for 
experimental work since the flow is turbulent, provided the thermal noise is 
sufficiently strong, and also for the numerical simulation since 6 is not too 
small to require a prohibitive number of points adequately to represent the fields 
spatially. 

We obtain approximate solutions to (2) after the following simplifications. 
First, we set the terms A, Yof (2b), ( 2 c )  to zero, the weak coupling approxima- 
tion. This is not as harsh as it seems at first sight. If B 2 1 the S’term will already 
be negligible. Further, the structure of the mean temperature field, as deter- 
mined in the laboratory, reveals thin thermal sublayers dominated by molecular 
diffusion and a nearly isothermal core. In  other words, the mean temperature 
gradients are only large near the horizontal boundaries and the mean tempera- 
ture change across the bulk of the flow is so small that a very crude representation 
of the non-linear fluctuating heat advection, even putting it to zero, cannot 
effect the essential features of the flow. The vital physical process of molecular 
diffusion is retained in both (2a) and (2b) in the (a2/8z2) terms. The second simpli- 
fication is much more difficult to justify, it is in effect no more than an expedient 
to reduce (2) from three dimensions to one. We simply write V: = - k2. That is 
to say we consider, as does Herring, that there is a single dominant horizontal 
wave-number, k. There is a further consequence of this reduction, namely we 
have a problem in one space dimension, z with a velocity w(z)  even though the 
fluid is (nearly) incompressible. Whether or not we can identify k and w with 
physical elements of actual flows remains to be seen. For the moment they are 
phenomenological artifacts of this one-dimensional representation. The third, 
and final, simplification is to replace by w8. In  view of the above comment 
relating to w this is now a relatively harmless approximation. Also there is some 
physical validity in the replacement since, as is known from experiment, the 
major heat transfer mechanism outside the sublayer is the ejection of blobs of 
sublayer fluid so that w, 0 should be strongly correlated. The reader unfamiliar 
with the ruthless approximations needed to cope with turbulence studies may be 
surprised that the approximation works at all. 

t In particular the Nusselt number N cc A*and thehorizontalwave-number for maximum 
N for given A satisfies K K A) .  



The temporal development of convection 

With the above simplifications (2) becomes 
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The boundary conditions are: (i)  on x = 0, T = 1, 8 = 0, $ = 0, w = 0, w, = 0; 
(ii) on z = 1, T = 0,8 = 0, $ = 0, w = 0, w, = 0. The initial conditions are: T = 4, 
$ = 0, w = 0 and a white noise 8 field of r.m.s. amplitude E ,  with T = 1,0 on 
x = 0, 1 at t 2 0 except when stated to the contrary. In  view of the somewhat 
arbitrary choice of k we shall use values suggested by Herring’s data. These 
values are near those which lead to a maximum heat transfer for a given Rayleigh 
number. For example, at A = 105 we choose k2 = 25. Further, all the present 
calculations are restricted to (r = 1.  

The above equations are quite similar to the convection equations in two di- 
mensions and represent processes of diffusion, momentum generation from 
buoyancy forces, but a greatly simplified form representing the advection of heat. 
Nevertheless, the two essential advective processes are present; heat transports 
produced by vertical velocity fluctuations working on both temperature fluctu- 
ations and on the mean temperature gradient. In  particular (4) adequately 
defines a Bknard-Rayleigh problem, namely for A less than a critical value no 
persistent motion is possible and T -+ (1 - z).  There is a further important com- 
mon feature, namely, if the initial state has zero fluctuation fields 8,$,  w and the 
boundary conditions are steady the fluctuation fields remain zero. For example, 
if at  t = 0: w = 0 and hence from (ad)  $ = 0; from ( 4 b )  8 remains zero; and hence 
from (4c) Q, remains zero. For our present task therefore random initial values 
(generally somewhat less than 1 yo of the expected final values) are set as initial 
conditions for 8, Q,, w. 

The model system (4) involves two phenomenological parameters, k2 and the 
ratio r = (wO)/(wa). As shown by Herring the solutions are insensitive to the 
choice of k2 provided k2 is chosen near the value for which the Nusselt number 
N satisfies aN/ak = 0. It is necessary to know also to what extent the solutions 
depend on r ,  which throughout this paper will be taken to be unity. It is clear, by 
inspection of (4) that the coefficient r can be ‘removed’ from the field equations 
(and the boundary conditions) by the transformation (0, w, Q,) * (8, w, $)&. 
Under this transformation the time scale of the motion and the form of T, 8, w, @ 
is unaltered. Only the amplitudes of the fluctuations are altered in the ratio 4.. 
Thus if we find later that other considerations require r =+ 1 the solutions for 
8, w, Q, can be simply scaled in proportion. 

It is important to note that in this model k2 is a free parameter. We cannot 
therefore expect the results from this model to apply to actual flows near the 
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critical Rayleigh number where we know from linear stability theory that at the 
onset of motion k2 is determined. The correlations implied by (3) would then no 
longer apply. Only for sufficiently large Rayleigh numbers, for a given thermal 
boundary noise, when k2 is independent of the layer depth could the results of 
the model provide a representation of actual flows. 

The method of solution of (4) is an iterative finite difference technique, using 
the samemethods as1 have used before (Elder 19663) apart from the trivial coding 
changes required for one space dimension rather than two. The outer iteration is 
organized as the equations are written in (4). Most of the calculations used 
100 mesh points and give a precision of better than 0.01 yo. Compared to the 
labour of a simulation in two dimensions a system of equations such as (4) is 
very straightforward. 

Since we have two overlapping requirements, namely to compare Herring’s 
and our results for the steady state and to compare with the two-dimensional 
simulation i t  is convenient to consider the two cases of the initial ambient 
temperature: (i) the symmetrical case of T = 0.5; (ii) the asymmetric case 
T = 0. The following $$3 and 4 treat only case (i), while $55 and 6 treat case (ii). 
Note that with initial T = 0 we have a layer suddenly heated from below, but 
otherwise we have both sudden heating from below and equal cooling from 
above. 

3. The steady state 
Figures 1 and 2 show data? for fully developed solutions bf (4) for A = lo4, 

lo5 (with cr = 1) .  They are very similar to the data given by Herring (1964, 
p. 282, figures 3-6), with CT = co. This is seen more clearly in the comparison of 
table 1. Any differences in the data of this table reflect differences solely in 
numerical technique, largely differences in spatial representation and solution 
time t .  The solution times are more than adequate for convergence to the steady 
solution, for example, the run here at A = lo5 shows variations about the 
temporal mean Nusselt number of less than 1 : lo4 at t = 0.1, but solutions were 
continued to t = 0.2. We conclude that the differences are due to the spatial 
representation. The main weakness in the present representation arises from the 
term (we), in (4a)  which has the alternative finite difference, far product form 
( ~ 8 ,  + ew,). Both forms have been used here with negligible (i.e. < lo4) difference 
in the solutions. Nevertheless, apart from the largest difference in N at lo5, the 
differences are very minor when it is clear on other grounds (see $ 6 )  that the 
model can at  best be accurate to perhaps & 10 %. 

The profile data for A = lo5 is presented in more detail in table 2 .  This should 
be valuable for comparison with other work. 

I should like to comment in passing on a few features of this data. (i) One of 
the intriguing features of the mean temperature profiles obtained both here and 
in Herring’s work is the small bumps on the mean temperature profiles. Figure 3 
shows this structure in more detail than can be seen in figures 1 and 2. The magni- 

t Note that steady solutions are independent of u. 
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FIGURE 1 .  Steady profiles of T, 8, w, at A = lo4, li2 = 9. @-scale = 0.185; w-scale = 21-9. 

1 

0 I 
z 

FIGURE 2. Steady profiles of T, 0, w, at A = lo5, k* = 25. &scale = 0.180; w-scale = 123. 
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R k2 Wlm, emax LV 
4 x 103 9 10-38 0.188 1.989 (1.968) 

104 9 21.912 (21.95) 0.1847 (0.185) 2.823 (2.824) 
104 16 24-72 0.183 2.925 
105 25 122.62 (127-5) 0.1798 (0.20) 6.283 (6.712) 

TABLE 1. Data from steady state solutions. In brackets Herring’s (1964) data 

Unit 

0.00 
0.05 
0.10 
0.15 
0.20 
0-25 
0.30 
0.35 
0.40 
0.45 
0.50 

z 
0.1798 

0.000 
0.7355 
0.9974 
0.7644 
0.5380 
0.4206 
0.3574 
0.3206 
0.2990 
0.2875 
0.2838 

e 
122.6 

0~0000 
0.0639 
0.2060 
0.3728 
0.5347 
0.6773 
0.7949 
0.8856 
0.9495 
0.9874 
1~0000 

W 

TABLE 2. Normalized steady profile values at A = lo5 

1.000 
T 

1.000 
0.7001 
0.5234 
0.4926 
0.4979 
0.5004 
0.5009 
0.5008 
0.5006 
0.5003 
0.5000 

tude of the bumps is only about 0.007, and is about half of that seen in Herring’s 
data. I doubt the physical reality of the bump. In my own investigations (Elder 
1966a) where I have very carefully looked for it, a bump of 0.002 would have 
been identified. We must not expect too much from the model and an error of form 
of only 0.7 yo should not be taken seriously. (ii) A more disturbing feature of the 
form of the results is that of 8 and w. The laboratory experiments indicate that 
the interior of the flow has an approximately homogeneous fluctuation field. 
Certainly the 0, w and w8 correlations and spectra (Elder 1966a;  Deardroff & 
Willis 1967) are independent of position outside the sublayers. In  a model of this 
kind therefore, it would be preferable to obtain 8, w profiles which are nearly 
independent of x outside the sublayers. The 0 field is acceptably constant but the 
w field is not, the w field retains the sin2 nx type of form regardless of the Rayleigh 
number. Any possibility of removing this feature would seem to be the most 
profitable line to follow in improving this model. 

The final approach to the steady state 
We observe that the approach to the steady state involves a damped oscillation. 
This is seen clearly in the data of figure 4 which plots log I ( N  - N,) /N ,  I against t .  
After the first two cycles the period is nearly constant (e.g. after t FZ 0.3, the 
period is about 0-02 for A = lo5, v = 1). 

The sensitivity of the steady state to small variations in either initial or 
boundary conditions is a matter of importance. The final solutions found here are 
not dependent on the initial conditions, provided 8, 4, w are not identically 
zero. This has been confirmed by a number of solutions with extreme choices of 
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initial conditions. Further, it is clear from the discussion immediately above that 
the system will respond to low frequency noise at  the boundaries as a highly 
damped system. Finally, therefore it remains to check the sensitivity of the system 
to high frequency thermal noise at the boundary. The solutions show that the 
system is very strongly damped. For example, with random thermal noise of 
amplitude 0.1 the effects on the mean fields were less than 1 %. Clearly the wall 
layer acts as an efficient low pass filter. 

0 0 2  

2 

FIGURE 3. Profile detail: T ( z )  from figure 2. 

0 0- 1 

t 
FIGURE 4. Approach to the steady state; relative Nusselt number departure 

as a function of time. 

This behaviour emphasizes an essential difference between this model and 
laboratory realizations. In  the laboratory the wall layer is in a state of continuous 
instability, with sporadic but persistent production of buoyant elements. This 
property of continuous instability is not a feature of the pre.sent model. 
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4. The time development: symmetric case 
Data showing the development of the fluctuation fields are shown in figure 5. 

We recognize three distinct phases of the motion: (i) there is an interval, 0 < t < t ,  
during which molecular processes are completely dominant, the advection of 
heat being negligible. In  figure 5, t ,  M 2 x and is so short that this interval is 

I 
t 

FIGUFZE 5. Time development of the fluctuation fields 0, w ;  spatial maxima 0,(t), torn($) : 
A = lo5, k2 = 25, 8 = 0.0087. 

poorly represented. During this interval the system behaves like a thermally 
conducting solid; (ii) for t > t ,  there follows an interval of roughly exponential 
growth of the fluctuation fields during which the contribution of the non-linear 
terms becomes increasingly dominant. Towards the end of this interval the non- 
linear terms are sufficiently large to limit the fluctuation amplitudes to finite 
values; (iii) in the subsequent time the system behaves like a damped oscillator 
in the manner referred to  in 9 3 above. 

The initial development of the fluctuation fields is seen in the detail of figure 6 
which shows 8,(t), the spatial maximum value of 8, to be very closely exponential 
(a more detailed discussion will be given in $6). There is an important conse- 
quence of this type of temporal development with a nearly constant growth rate. 
The time for the fluctuations to grow to finite amplitude is directly related to the 
initial noise level. For example, if the growth rate n = a log B/at and 8, is the value 
of 8 at  which the non-linear processes first begin to limit the exponential growth 
of the fluctuations (0, M 0.15 for the data of figure 6) the time required is of 
order n-l log ( O f / € ) .  The net effect on the subsequent development will be simply 
a displacement in time of this order. We confirm this idea with the data of figure 7 
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I 

t 
FIGURE 6. Log-linear detail of time development of 8; spatial maximum om@) ; as in figure 6. 

10 

N 

1 

0 
0 0- 1 

t 

FIGURE 7. Time displacement effect: Nusselt number N as a function of time for three 
values B of initial thermal noise. 
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which shows N ( t )  for various values of 8. This observation has an obvious im- 
portance when we try to compare our numerical and laboratory results. In the 
laboratory hhe very small initial thermal noise levels are difficult to measure 
reliably so that there is an uncertain time displacement to be kept in mind. 
Similar considerations will be required when comparing alternative numerical 
simulations. 

The data of figure 5 compares moderately well with somewhat similar data 
given by Herring (1963, p. 329, figure 1) .  The time scaling is rather different. but 
as mentioned above, that is an expected possibility. 

The development of the mean profiles is shown in figure 8. During interval 
(i) the profiles closely approximate the solutions when the T, 8 fields are un- 
coupled from the $, w fields. During interval (ii) 6, w are largely confined to 
regions near the walls and thereafter in (iii) we approach the steady state. Note 
at t = 0.04 the pronounced negative temperature gradient in the central region. 
This is a reflexion of the tendency inthe laboratory for the motionto be dominated 
by hot blobs rising from the lower boundary and cold blobs falling from the 
upper boundary. 

One of the features of the mean temperature profile of thermal turbulence 
which has excited considerable interest is the possibility of a similarity form for 
part of the profile. The existence of such a structure in the lower atmospheric 
boundary layer has been rather clearly identified by Priestley (1  954) and others 
but identification in the laboratory has not been very successful. Townsend 
(1959) foundlittle evidence for it in his data, however, Elder (1965, 1 9 6 6 ~ )  claims 
to have found that if such a relationship exists it can only be identified in the 
‘mixing’ region between the conduction dominated wall region and the flow 
interior. This point of view is also borne out by the recent measurements of Dear- 
dorff & Willis (1967b). It is of interest to see if there is any evidence for such a 
region in the present data. Figure 9 presents in log-log form the mean temperahre 
profile as a departure from the central value for t = 0.04 at A = lo5. The steady- 
state profile within the wall region, has a monotonically changing slope and 
therefore cannot be described by a similarity form. But the data at t = 0.04 does 
have a rather short straight portion of slope - + adjoining the outer portion of 
the conduction dominated wall region. The fit is about as good as that of labora- 
tory data. At  fist sight one is tempted to dismiss this observation as barely 
significant, but the region is in the right place and has the expected slope. It is 
features of this kind which suggest to this experimenter that the model is along 
the right lines and worthy of further investigation. 

5. The time development: asymmetric case 
So far we have presented results for the ‘symmetrical’ case of simultaneous 

sudden heating from below and cooling from above. For a simple experimental 
test this case is rather restrictive since the mean temperature throughout the 
bulk of the layer remains unchanged. However, in the ‘asymmetrical’ case of 
only sudden heating from below there is a development of the mean temperature 
everywhere in the layer and therefore if we, for example, measure T(+, t ) ,  which 
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1 

8 

0 1 

FIGURE 8. Symmetric case profiles at t = 0.02, 0.04, 0.06; A = lo5, k2 = 25, E = 0.0087: 
(a)  T; (b) 8, scales 0.020, 0.255, 0.200. The w-profiles are similar to those in figure 2 but 
with scales: 5.18, 118, 123. 

0.5 

0.1 

-bl 

I 
h 

0.0 1 ' 
0.0 I 0. I 0.5 

z 
FIWRE 9. Log-log detail of T(z) at t = 0.04 as in figure 8(a). 
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is straightforward, we could compare the evolution of the model and the ex- 
periment. In  addition this is the type of situation of interest where one might 
wish to use the weak coupling approximation in evolutionary studies. The most 
important feature of the asymmetrical case in the present context is that the 
system exhibits two distinct time scales: the time scale of the sublayer and the 
time scale of accumulation of thermal energy in the layer as a whole, in other 
words the time of heating up. The symmetrical case exhibits only the former time 
scale. Now the average temperature of the whole layer, T,, clearly satisfies 
!!', = No - Nl where No and Nl are the Nusselt numbers for z = 0 and 1 so that the 
time scale (of T,) is proportional to A-*, as expected from dimensional analysis. 
But since both No and Nl involve t in a different manner the constant of propor- 
tionality will be different from that of the sublayer. 

Figure 10 presents data showing the development of the mean profiles for the 
asymmetrical case. Many of the features of the profiles are the same as those seen 
above and need no further comment, but the form of the mean tempera- 
ture profile is unexpected. The motion for t < 0.02 is largely independent 
of conditions near the upper boundary. Such an interval is expected, but 
during this time the mean temperature profile develops a pronounced bump 
corresponding to initial eruption of blobs from the protosublayer. In  the 
laboratory and in the two-dimensional simulation, entrainment and almost 
complete separation of the rising blob from the sublayer are essential features of 
the initial destruction of the protosublayer. Neither of these processes can be 
represented by a one-dimensional model, yet the gross features of the eruption 
of the buoyant elements are. 

6. Comparison with the two-dimensional simulation 
We now compare the behaviour found in this one-dimensional model with 

that found in the two-dimensional simulation of the protosublayer (Elder 1968a). 
Much of the detail is necessarily lost but the broad features remain. The de- 
velopment of the profiles during interval (ii) is particularly interesting since it 
corresponds to the period of vigorous convection in the protosublayer prior to 
and during the eruption of the buoyant elements. 

The development of the flow in two dimensionsf- is represented in the field 
distributions of figure 11. The field distributions show the eddies embedded in 
the protosublayer till time 0.02, the period of eruption of the buoyant elements at  
t M 0.03 and the subsequent domination of the flow by the large-scale eddying 
motions in the interior. 

The final growth rate n given by the data of figure 10 can be compared with 
the final growth rates estimated during the corresponding two-dimensional 
simulation of the protosublayer (Elder 1968a, table 1). These data are compared 
in figure 12. The data lie near the same line n cc Ab, which is expected from 
dimensional analysis as indicated in the discussion of scaling in $ 2 .  

The above discussion overlooks two features of the initial development: the 
t Data has been taken from the solutions obtained by Elder (1968a), but where necessary 

further solutions have been found by identical methods. 
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FIGURE 10. Asymmetric case profiles at t = 0.02-0-12; A = lo5, k2 = 25, E = 0.0002: 
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FrauRE 11. Field distribution of stream function $ and temperature 0 at A = 105, c = 1, 
I = 2: two-dimensional simulation. 
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finite critical time and the non-constancy of the growth rate. These features are 
obscured in the data of figure 6, where the time resolution is rather coarse. But 
the data of figure 13 with both a lower initial thermal noise and finer time resolu- 
tion clearly shows the critical time and the non-constant growth rate. By re- 
peating the calculation for various 6 I have verified that apart from a change of 
level the shape of the curve in figure 12 is independent of E provided E is sufficiently 

A 
FIGURE 12. Comparison of growth rates n(A) for one- @ and two-dimensional 0 simulations, 

asymmetric case: A = 105, k2 = 25. 

small. In  particular the critical time, at  which amplification begins, is inde- 
pendent of E. At A = lo5 the critical time is 2.65 x 
(at A = lo5) the critical time and the superexponential region are amplitude de- 
pendent. This is because the imposed temperature fluctuations are ‘finite ’ and 
the non-linear terms in (4) are important from time zero. The growth rate itself 
is shown in figure 14. These data are qualitatively similar to those obtained in the 
two-dimensional simulation. The superexponential and exponential regions are 
seen in both sets of data. The form of n( t )  seen in figure 14 is however different in 
detail from that suggested in Elder (1968a, equation (20)). 

In this connexion the data of figure 10 highlight a feature of the profiles we have 
so far overlooked, namely that the thickness of the thermal sublayer passes 
through a maximum and is then reduced because of the increasing vigour of the 
interior motion. This observation aids the interpretation of the data of figure 14. 
In  the heuristic analysis of Elder (1968a) it was assumed that throughout the 
interval of ‘exponential ’ growth the protosublayer thickness was monotonically 
increasing proportional to .Jt. Whence it follows that n should monotonically 
decrease; although increasingly slowly. But as seen in figure 14, after a time, n 
becomes very nearly constant. Hence the final phase of nearly exponential 
growth is achieved through active modification of the mean temperature profile, 
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FIGURE 13. Log-linear detail of O&), showing critical time and superexponential region, 
asymmetric case, A = lo5, k2 = 25. 
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FIGURE 14. Growth rate m ( t )  for the flow of figure 13. 
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arising from the finite amplitude fluctuations, rather than because the asymp- 
totic state t -+ m has been reached. In  other words the fluctuations play an im- 
portant dynamical role earlier than was previously suggested. 

The adequacy of the overall development of the flow can be appreciated from 
the heat transfer data of figure 15. The time scales are quite similar as can be 
seen from the time of first amplification, the time of the first peak and the time of 
approach to the final state. The subsequent details are however quite unrelated 
and the final mean level is roughly 20 yo higher for the one-dimensional model. 

20 

10 

N 
5 

2 
0 0.2 

1 

FIGURE 15. Comparison of Nusselt number development for one- and two-dimensional 
simulations, asymmetric case, A = lo5. 

While strictly we must take the model system (4) at face value it is tempting to 
identify the quantities 8, w, q5 with corresponding quantities in the two-dimen- 
sional simulation. This is a rather suspect procedure since we are really trying 
to get more from the model than has been put into it. For example, we show in 
figure 16 the mean profiles for the two-dimensional simulation of T ,  8’, w‘ where 
O‘, w‘ are r.m.s. departures from the horizontal means. These profiles are strikingly 
similar in form to the profiles of figure 10. The major discrepancy is in the ampli- 
tudes of 8‘ and w‘. The ratio (O’/O)/(w’/w) M 5, whereas it should be approximately 
unity. This is disturbing and I am unable to account for it. At  the moment if we 
wished to identify 8 with 8’ then values of w are about five times higher than w‘. 

The numerical simulations indicate that the weak coupling approximation 
provides an adequate description not only of the final (statistically) steady state 
but of the evolution of the mean fields from a state of rest towards the (statistic- 
ally) steady state. There are several features of the model however which deserve 
further investigation. The complete neglect of the fluctuating interactions is not 
very serious provided (T 2 1, but the ad hoc nature of the choice of k is disturbing, 
when it is clear from experiment that the horizontal wave-number spectrum is 
very broad. 

28-2 
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FIGURE 16. Profiles of :(a) T; ( b )  0’; scales 0.203, 0.124, 0.198, 0.183, 0,191; (c) w’; scales 
8-9, 8.6, 17.6, 22,6, 21.8; a t  various times corresponding to the flow of figure 11, where 
B’, w‘ are r.m.8. departures from horizontal means; (d) in thesteady state, B’scale = 0.19; 
w’scale = 24. 
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Note added in proof. The phrase ‘ evolutionary studies ’ may not be clear to all 
readers. Let me give an illustration. For example, a thermal history of the earth 
can be constructed by considering the cooling of a hot sphere of viscous fluid 
(Elder 1968b, 9 6). In  spite of its all too obvious weaknesses, the weak-coupling 
approximation allows for the first-time studies of such models. This is immense 
value to the geophysicist. Unfortunately, the astrophysicist modelling stars 
with cr - must wait development of suitable representations of the term 9 
in ( 2 ~ ) .  It is to be hoped that the work begun by Spiegel (1968) and his col- 
leagues with these ‘ strong-coupling ’ approximations will soon bear fruit. 


